

Руководство пользователя G25 GCS (Ground Control Station)

ООО «Джи 25» 2025 год

Оглавление

1. Виджет фактического / заданного значения (Actual / Target)	3
2. Верхняя панель	4
2.1. Соединение с полётным контроллером	5
2.1.1. Способ подключения: USB (COM, Serial)	9
2.1.2. Способ подключения: ТСР	12
2.1.3. Способ подключения: UDP (в качестве сервера)	14
2.2. Виджет Тяга	15
2.3. Виджет Скорость	
2.4. Виджет Тангаж	19
2.5. Виджет Высота	20
2.6. Виджет Направление	21
2.7. Виджет Режим	22
2.8. Виджет Аккумулятор	25
2.9. Виджет Двигатели	26
2.10. Виджет Джойстик	27
2.11. Виджет GNSS	29
3. Боковая панель	31
3.1. Авиагоризонт	
3.2. Дублирование состояния аккумуляторов	34
3.3. Переключатели для записи мин/макс значений в RC	35
4. Карта	
4.1. Менеджер карт	
4.2. Путь	
4.3. Контекстное меню карты	42
4.4. Центрирование и ориентация	44
4.5. Расчет параметров автоматического возврата БПЛА	46

1. Виджет фактического / заданного значения (Actual / Target)

Это уникальный виджет, разработанный специально для G25 GCS (Ground Control Station) (далее G25 GCS). Его назначение: компактное отображение фактических данных, передаваемых полётным контроллером БПЛА, и значений, заданных пользователем.

Виджет состоит из следующих частей: основной секции (занимает верхние 2/3) и дополнительной (занимает нижнюю 1/3). Белым цветом слева обозначены данные (телеметрия), получаемые от полётного контроллера. Розовым цветом справа отмечены значения, которые должны передаваться в полётный контроллер.

Сразу после запуска G25 GCS на месте фактического и заданного значений установлены цветные точки, означающие отсутствие данных.

Виджет имеет два состояния: активное и неактивное. Для смены состояний виджета необходимо щёлкнуть по нему ЛКМ. В неактивном состоянии заданное значение не передаётся полётному контроллеру, дополнительная секция виджета окрашена в тёмно-серый цвет.

В активном состоянии фактическое значения стремится к заданному значению, дополнительная секция виджета окрашивается в светло-зелёный цвет.

Поведение конкретных реализаций данного виджета в интерфейсе G25 GCS слегка отличается и описывается в соответствующих разделах настоящей документации, но основная идея фактического и заданного значений сохраняется.

2. Верхняя панель

На верхней панели расположены виджеты, с которыми пользователь G25 GCS взаимодействует большую часть времени:

- 1. Виджет "Тяга";
- 2. Виджет "Скорость";
- 3. Виджет "Тангаж";
- 4. Виджет "Высота";
- 5. Виджет "Направление";
- 6. Виджет "Режим";
- 7. Виджет "Аккумулятор";
- 8. Виджет "Двигатели";
- 9. Виджет "Джойстик";
- 10. Виджет "Связь";
- 11. Виджет "GNSS".

E G25 GCS 1.55.1											_	Ø	\times
0% 50%	0.3м/с	-0° 50%	-0.1м	2° 0°	FBWA QLAND		Остановлены	Нет	100%	Нет			
ТЯГА	СКОРОСТЬ	ТАНГАЖ	высота	НАПРАВЛЕНИЕ	РЕЖИМ	АККУМУЛЯТОР	ДВИГАТЕЛИ	джойстик	СВЯЗЬ	GNSS			

2.1. Соединение с полётным контроллером

Соединение с полётным контроллером может быть осуществлено тремя способами:

1. По USB (СОМ, Serial, последовательный порт);

2. По ТСР;

3. По UDP в качестве сервера. При этом полётный контроллер первым инициирует подключение;

4. По UDP в качестве клиента. При этом G25 GCS первым инициирует подключение.

Для вызова диалогового окна управления соединением с полётным контроллером щёлкните ПКМ по кнопке *Связь* на панели инструментов в верхней части окна G25 GCS.

Первое открытие диалогового окна после запуска G25 GCS предложит пользователю подключиться по USB (COM, Serial).

USB	Сеть
Номер борта	
Устройство с после,	довательным интерфейсом USB (COM 🗧 🔻
4800	-
	Подключиться

Рассмотрим свойства диалогового окна, общие для всех способ соединения.

Поле *Номер борта* необходимо для ведения журнала отработанных часов конкретным БПЛА. Значение данного поля используется в названии файла в каталоге. \logs\. Например, *Номер борта* A-16346253 будет записан как .\logs\A-16346253.csv. Данный файл имеет следующую структуру: время дизармирования (выключения моторов), время в полёте (от армирования до дизармирования). В журнале ниже, например, борт с номером А-16346253 осуществил два непродолжительных полёта.

A-16346253.cs	v – Блокнот					Х
Файл Правка Фор	рмат Вид Справка					
2025-03-1 2025-03-1	.2 17:00:36.19 .2 17:00:50.20	6574 8246	,0:00:06.005 ,0:00:09.027	5007 7893	7 3	~
						\sim
	Стр 2, стлб 42	100%	Windows (CRLF)	UTF-8	3	

Когда соединение не установлено, кнопка Подключиться окрашена в светлозелёный цвет. По нажатии на кнопку Подключиться инициируется попытка подключения заданным способом и с заданными параметрами. При этом кнопка окрашивается в жёлтый цвет и текст кнопки Подключиться меняется на Идёт соединение...

USB		Сеть	
Номер борта			
Устройство с пос	ледовательным ин	терфейсом USB (COM!	•
4800			•
	Идёт соедине	ние	

В настоящей версии G25 GCS прервать инициированное, но не завершенное соединение, невозможно, НО если ещё раз нажать кнопку Идёт соединение — предыдущая попытка соединения будет завершена принудительно с последующей инициацией новой попытки соединения с актуальными параметрами и способом соединения. Таким образом возможно начать новую попытку подключения без перезапуска G25 GCS в случае неверно указанного способа соединения или параметров соединения.

При успешном подключении к полётному контроллеру кнопка окрашивается в красный цвет и текст кнопки *Идёт соединение...* меняется на *Отключить*.

USB	Сеть
Номер борта	
Устройство с последовательни	ым интерфейсом USB (COM: 🔻
4800	•
Откл	ючить

По нажатии на кнопку *Отключить* соединение с полётным контроллером завершается и становится возможным подключиться заново тем же способом и с теми же параметрами, либо изменить способ подключения.

При наличии активного соединения дополнительная секция кнопки Связь окрашивается в зелёный цвет, в основной секции кнопки пишется слово *Есть*.

В случая отсутствия ранее установленного соединения с полётным контроллером более трёх секунд дополнительная секция кнопки окрашивается в красный цвет, а в основной секции ведётся отсчёт времени отсутствия связи в секундах.

Нет 102с	
СВЯЗЬ	

В следующих подразделах подробно описаны нюансы всех способов соединения с полётным контроллером, реализованные в настоящей версии G25 GCS.

2.1.1. Способ подключения: USB (COM, Serial)

Способ, при котором полётный контроллер и компьютер с G25 GCS соединяются через последовательный интерфейс посредством, например, кабеля USB.

Для инициации подключения через USB необходимо выбрать вкладку *USB* в диалоговом окне управления соединением и указать два параметра соединения:

1. Устройство из выпадающего списка;

2. Скорость передачи данных в бодах из выпадающего списка.

В списке устройств отображаются названия устройств и номера последовательных портов в скобках (например, COM9, COM10). В список могут попасть не только доступные полётные контроллеры, но и любые другие последовательные устройства.

USB	Сеть	
Номер борта		
Устройство с последовательным интерфейсом	1 USB (COM9)	
Устройство с последовательным интерфейсом USB (COM10)		
Отключит	Ъ	

Список обнаруженных устройств в выпадающем списке не обновляется автоматически. Чтобы устройство, подключенное после открытия диалогового окна, появилось в списке, необходимо закрыть диалоговое окно щелчком ЛКМ вне диалогового окна и повторно открыть диалоговое окно управления соединениями щелчком ПКМ по кнопке *Связь*.

В выпадающем списке скоростей передачи данных в бодах перечислены все стандартные скорости: от 4800 до 921600 бод.

i

В случае, если попытка подключения с указанной скоростью передачи данных завершится с ошибкой, будет предпринята попытка автоматически подобрать правильную скорость передачи данных.

	4800	
l	9600	
	19200	
	38400	
	57600	
	112500	
	230400	
	460800	
	921600	
		Соединить

По нажатии на кнопку *Соединить* будет инициирована попытка подключения к выбранному последовательному устройству с выбранной скоростью передачи данных в бодах (с автоматическим подбором правильной скорости в случае неудачи).

В настоящей версии G25 GCS присутствует ошибка, связанная с переключением полётных режимов при подключении через USB: режимы не переключаются.

2.1.2. Способ подключения: ТСР

Особенность протокола TCP заключается в предоставлении надежной, упорядоченной и контролируемой по ошибкам передачи данных между приложениями по сети, устанавливая соединение, гарантируя доставку пакетов в правильной последовательности и повторно передавая потерянные данные, обеспечивая тем самым целостность и надежность передаваемой информации.

USB	Сеть
Номер борта	
 ТСР UDP UDPCI Сокет (IP-адрес:порт) 192.168.11.90:14550 	HM-30
Соед	инить

Для подключения к полётному контроллеру через TCP необходимо выбрать вкладку *Сеть* в диалоговом окне управления подключениями, затем выбрать протокол TCP (круглая фиолетовая радио-кнопка), ввести IP-адрес (IPv4) и порт через двоеточие в поле *Сокет (IP-адрес:nopm)*.

Данное поле снабжено валидацией, которая срабатывает при каждом следующем введённом/удалённом символе. В случае ввода некорректного IP-адреса или порта ниже поля выводится предупреждающее сообщение.

USB	Сеть
Номер борта	
 ТСР UDP UDPCI Сокет (IP-адрес:порт) 192.168.1.256 	П НМ-30
Неверный IP-адрес! Соед	

USB	Сеть
Номер борта	
 ТСР UDP UDPCI Сокет (IP-адрес:порт) 192.168.1.100:77777 	HM-30
Неверный номер порта! Номера до 65535 включительно. Соед	а портов лежат в пределах от 1 инить

Кнопка Подключиться становится неактивной до тех пор, пока введённый IPадрес и порт не будут иметь корректный формат.

2.1.3. Способ подключения: UDP (в качестве сервера)

UDP — это протокол без установления соединения, ориентированный на передачу данных, но не гарантирующий доставку или порядок пакетов. Имеет большую пропускную способность по сравнению с TCP, но меньшую надёжность.

Для подключения к полётному контроллеру через UDP необходимо выбрать вкладку *Сеть* в диалоговом окне управления подключениями, затем выбрать протокол UDP (круглая фиолетовая радио-кнопка), ввести IP-адрес (IPv4) и порт через двоеточие в поле *Сокет (IP-адрес:nopm)*. Для подключения по UDP в режиме клиента выберите UDPCl (круглая фиолетовая радио-кнопка).

USB	Сеть
Номер борта	
О ТСР О UDP О UDPCI Сокет (IP-адрес:порт) 192.168.1.100:14550	☐ НМ-30
Соед	инить

В остальном подключение по UDP не отличается от подключения по TCP. См. Способ подключения TCP.

i

Если Вы используете комплекс связи HM-30 от компании SIYI установите флаг *HM-30* (квадратная кнопка справа от радио-кнопки UDP) <u>перед подключением</u>. Использование отдельного флага обусловлено техническими нюансами подключения к комплексу связи HM-30.

По умолчанию для подключения к комплексу связи HM-30 используются следующие IP-адрес и порт: 192.168.144.12:19856.

2.2. Виджет Тяга

Управление тягой моторов осуществляется с помощью виджета фактического/ заданного значения (см. Виджет фактического/заданного значения (Actual/Target)) на панели в верхней части окна G25 GCS.

Тяга задаётся в процентах: от 0 до 100%. Заданное значения тяги может быть изменено приращением значений к текущему значению либо с помощью колеса прокрутки компьютерной мыши или с помощью тачпада, либо введением абсолютного значения с помощью клавиатуры.

Для введения абсолютного значения тяги необходимо щелкнуть ПКМ по виджету *Тяга* и удерживать в течение 1 секунды до открытия диалогового окна.

В открывшемся диалогом окне необходимо ввести значение от 0 до 100 без указания символа %. Ввод значения осуществляется либо розовой кнопкой *Окей*, либо нажатием клавиши *Enter*. После ввода диалоговое окно автоматически закроется. Выход из диалогового окна без ввода значения осуществляется либо щелчком ЛКМ по кнопке *Отмена*, либо нажатием клавиши *Escape*.

Поле ввода заданного значения тяги имеет валидацию. Если введённое значение находится за пределами [0; 100] выводится предупреждающее сообщение. При этом кнопка *Окей* деактивируется.

Для изменения заданного значения тяги за счёт приращения значений к текущему заданному значению необходимо перевести виджет в режим быстрого ввода щелчком ПКМ. При этом заданное значение приобретёт эффект "дыхания", плавно изменяя цвет от белого до розового и обратно. Выйти из режима быстрого ввода можно тремя способами:

1. Нажать клавишу *Escape* на клавиатуре;

2. Ещё раз щёлкнуть ПКМ по виджету, находящемуся в режиме быстрого редактирования;

3. Не изменять заданное значение в течение 10 секунд. По истечении таймаута виджет выйдет из режима быстрого редактирования.

Находясь в режиме быстрого редактирования возможно изменять заданное значение с помощью вращения колеса прокрутки компьютерной мыши или с помощью тачпада. Вращая колесо прокрутки от себя значения будут увеличиваться с определённым шагом (по умолчанию 10). Вращая к себе — значения будут уменьшаться с определённым шагом (по умолчанию 10). Для более плавного ввода значений возможен ввод с зажатой клавишей *Shift* (по умолчанию значения увеличиваются/уменьшаются на единицу). Размеры шагов можно сконфигурировать в файле .\settings\Общие.yaml.

Для вступления изменений в силу необходимо сохранить файл и перезапустить G25 GCS.

2.3. Виджет Скорость

Отображает фактическую **воздушную** скорость, полученную с помощью приёмника воздушного давления (ПВД), в метрах в секунду. Не имеет заданного значения.

2.4. Виджет Тангаж

Реализован на базе виджета фактического/заданного значения (см. Виджет фактического/заданного значения (Actual/Target)), расположен на панели в верхней части окна G25 GCS. Изменение тангажа осуществляется путём записи значений во второй RC (Radio Channel, радиоканал) полётного контроллера.

В остальном работа с виджетом аналогична виджету тяги (см. Виджет Тяга).

2.5. Виджет Высота

Отображает фактическую высоту БПЛА над точкой взлёта в метрах. Не имеет заданного значения.

2.6. Виджет Направление

Реализован на базе виджета фактического/заданного значения (см. Виджет фактического/заданного значения (Actual/Target)), расположен на панели в верхней части окна G25 GCS.

Отображает фактический курс БПЛА, считанный с полётного контроллера, и позволяет задать курс, который БПЛА будет удерживать. Для того, чтобы БПЛА стал удерживать заданный курс, необходимо активировать виджет щелчком ЛКМ.

Удержание заданного курса работает только вместе с программноаппаратным комплексом БПЛА ООО "Джи 25".

Заданный курс может быть введён либо абсолютным значением, либо приращением к текущему заданному значению курса. Управление заданным значением курса аналогично управление тягой (см. Виджет Тяга).

298° 11°	
НАПРАВЛЕНИЕ	

2.7. Виджет Режим

Реализован на базе виджета фактического/заданного значения (см. Виджет фактического/заданного значения (Actual/Target)), расположен на панели в верхней части окна G25 GCS.

Белым обозначен фактический режим, розовым - заданный. Режимы переключаются между фактическим и заданным, при этом они меняются местами в основной секции виджета. Это позволяет быстро переключаться между последними режимами. Данный виджет не имеет активного состояния, когда дополнительная секция окрашена в зелёный цвет.

Для того, чтобы изменить заданный режим, необходимо щелкнуть ПКМ по виджету. Откроется диалоговое окно с выбором режимов работы полётного контроллера.

Обновить спи	сок
CRUISE	Автопилот поддерживает высоту, воздушную скорость и курс.
LOITER	Борт летает по кругу с заданным радиусом и направлением.
QLOITER	Автопилот удерживает точку в воздухе за счёт VTOL-винтов.
QLAND	Автоматическая посадка с использованием VTOL-винтов.

В диалоговом окне выбора заданного режима представлен список названий режимов (прямоугольные серые кнопки) и их краткие описания. По нажатии на кнопку с названием режима диалоговое окно закроется и выбранный режим будет помещён в основную секцию виджета *Режим* на место заданного режима.

Полный список доступных режимов расположен в конфигурационном файле . \settings\Полётные режимы.txt.

Строки с названиями режимов, начинающиеся с символа #, считаются закомментированными. Закомментированные режимы не будут отображаться в списке заданных режимов в диалоговом окне. Через точку с запятой указывается краткое описание режима работы полётного контроллера, которое также можно сконфигурировать для лучшего понимания алгоритма работы режима пользователем.

Чтобы добавить режим в список в диалоговом окне - раскомментируйте требуемый режим (удалите # в начале строки), сохраните файл и нажмите овальную кнопку *Обновить список* в диалоговом окне. В списке добавятся раскомментированные режимы.

В настоящей версии G25 GCS присутствует ошибка: слишком быстрое переключение режимов может повлечь за собой попадание фактического или заданного режимов в обе части основной секции виджета: и слева, и справа. В этом случае необходимо заново открыть диалоговое окно выбора заданного режима щелчком ПКМ по виджету и щелчком ЛКМ по названию требуемого режима.

2.8. Виджет Аккумулятор

Отображает состояние аккумуляторной батареи: напряжение в вольтах, силу тока в амперах и оставшийся уровень заряда в процентах с точностью до одного знака после запятой. Не имеет заданного значения.

2.9. Виджет Двигатели

Используется для запуска двигателей (армирования) и их остановки (дизармирования). В основной секции виджета указано текущее состояние двигателей: Остановлены / Запущены. Дополнительная секция виджета окрашивается в зелёный цвет, когда двигатели запущены.

Остановлены
двигатели
Запущены
ДВИГАТЕЛИ

Чтобы запустить или остановить двигатели щёлкните ЛКМ по кнопке *Двигатели*. В открывшемся диалоговом окне управления состоянием двигателей нажмите *Подтвердить*, чтобы запустить / остановить двигатели, либо *Отмена*, чтобы закрыть диалоговое окно.

В настоящей версии G25 GCS в случае неудачи запуска / остановки двигателей причины неудачи не выводятся на экран.

Основными причинами отказа в запуске двигателей являются флаги в параметре ARMING_CHECK (условия, которые должны быть соблюдены перед запуском двигателей) в открытой прошивке ArduPilot для полётных контроллеров и полётные режимы, в которых нельзя выполнить армирование: AUTO, AUTOTUNE, BRAKE, CIRCLE, FLIP, GUIDED, LAND, RTL, SMARTRTL, SYSID, FOLLOW.

2.10. Виджет Джойстик

Используется для выбора, включения и отключения компьютерного джойстика (или игрового контроллера или USB-радиопульта в режиме HID-устройства).

Щелчком ПКМ по виджету откроется окно выбора джойстика из выпадающего списка. Для подтверждения выбора необходимо нажать кнопку "Подтвердить".

(PC Compact Controller)	•
Подтвердить	Отмена

Джойстик выбран, но не активен. Для того, чтобы G25 GCS стала отправлять в полётный контроллер значения стиков необходимо активировать выбранный джойстик. Это делается щелчком ЛКМ по виджету после выбора джойстика. При этом цвет дополнительной секции виджета изменится на зелёный, а текст основной части сменится с "Нет" на "Есть". Для отключения / деактивации джойстика необходимо повторно щелкнуть ЛКМ по виджету.

Конфигурация джойстика содержится в файле .\settings\Джойстик.json.

В конфигурационном файле устанавливается соответствие RC-канала (отвечающего за тягу, тангаж, рыскание или крен) и оси (стика), а также инвертируется значение той или иной оси при необходимости.

Для вступления изменений в силу необходимо сохранить файл и перезапустить G25 GCS.

2.11. Виджет GNSS

Используется для выбора, включения и отключения морского GNSS-приёмника, который сообщает G25 GCS о местоположении плавающей платформы (судна) в ходе выполнения надводных миссий.

Для включения GNSS-приёмника и получения данных о местоположении судна необходимо щелкнуть ПКМ по виджету. В открывшемся диалоговом окне необходимо выбрать COM-устройство из выпадающего списка и указать частоту передачи данных, на которой устройство работает. После этого необходимо нажать "Соединить GNSS".

USB Serial Port (CO	M26)	•
4800		▼
	Соединить GNSS	
		•

В случае успешного подключения GNSS-приёмника дополнительная секция виджета окрасится в зеленый цвет и текст основной секции сменится с "Нет" на "Есть".

В случае, если GNSS-приёмник подключён и смог получить сигнал от нескольких спутников — на интерактивной географической карте отобразится пиктограмма корабля, динамически обновляющая своё местоположение вслед за движением судна.

Для центрирования карты на пиктограмме корабля необходимо нажать кнопку с изображением судна в правой нижней части интерактивной географической карты.

3. Боковая панель

На боковой панели в левой части окна G25 GCS расположены виртуальный авиагоризонт, дублирующая информация о состоянии аккумуляторов и опциональные переключатели значений в радиоканалах полётного контроллера.

Ширина панели может регулироваться удержанием ЛКМ за правый край панели и перемещением курсора влево/вправо. При этом авиагоризонт старается занять максимум доступного пространства панели.

3.1. Авиагоризонт

Для быстрого определения положения БПЛА в пространстве на боковую панель выведен виртуальный авиагоризонт, показывающий крен и тангаж БПЛА. В настоящей версии G25 GCS авиагоризонт не снабжен шкалами для определения точных числовых значений и показывает лишь приблизительные углы наклона БПЛА по тангажу и крену.

Авиагоризонт состоит из следующих частей: синим цветом над линией горизонта обозначено небо, коричневым цветом под линией горизонта - земля, черный круг с белой обводкой по середине обозначает тангаж (снижается или поднимается БПЛА), черные фигуры в форме русской буквы "Г" с белой обводкой символизирует крылья БПЛА и обозначают крен.

В настоящей версии G25 GCS при масштабировании дисплея свыше 100% средствами операционной системы небо и земля авиагоризонта смещаются вниз, что затрудняет определение тангажа, но не влияет на определение крена.

3.2. Дублирование состояния аккумуляторов

Под авиагоризонтом расположен виджет, дублирующий состояние аккумуляторов, с целью сократить путь, который необходимо преодолеть взгляду оператора для одновременного контролирования положения БПЛА в пространстве и остаточного заряда аккумуляторных батарей.

На ряду с дублирующей информацией об аккумуляторе нижней строчкой также отображается расход аккумулятора в миллиамперах (mAh).

3.3. Переключатели для записи мин/макс значений в RC

На боковой панели ниже дублирования состояний аккумуляторов располагаются опциональные переключатели RC (радиоканалов) между минимальным и максимальным значениями.

Количество переключателей, соответствие переключателей радиоканалам и краткое описания действия, за которое отвечает канал, настраиваются в файле .\settings \RCKаналы.yaml.

🧾 RCКаналы.yaml – Блокнот	-		_		\times
 СКаналы.yaml – Блокнот Файл Правка Формат Вид (- Канал: 6 Надпись: "Сбро Инверсия: "Нет Канал: 7 Надпись: "Сбро Инверсия: "Нет Канал: 8 Надпись: "Сбро Инверсия: "Нет 	Справка ос 1" ос 2" ос 3"				×
Стр 7, стлб 11	100%	Windows (CRLF)	UTF-8	Ak	стива

Для вступления изменений в силу необходимо сохранить конфигурационный файл и переподключиться к БПЛА. Перезапускать G25 GCS необязательно.

4. Карта

Карта представлена верхней панелью с настройками и рабочей областью карты с отображением координат, виджетами управления центрированием карты и другими виджетами.

4.1. Менеджер карт

Менеджер карт позволяет сохранять тайлы (квадратные фрагменты) карты на локальном диске для последующего их использования в отсутствие подключения к глобальной сети "Интернет".

<u>М</u> енеджер карт	<u>П</u> уть
<u>С</u> охранение	
<u>У</u> даление	
<u>Н</u> астройка…	
<u>Т</u> окен	
<u>О</u> чистка кэша	

Для сохранения участка карты на локальном диске необходимо выбрать пункт "Сохранение..." и в появившемся меню указать название сохраняемого пакета тайлов, долготу и широту левого верхнего и правого нижнего участков карты. По нажатии на кнопку "Сохранить" указанные тайлы будут скачаны на локальный диск и использованы автоматически при перемещении карты на указанную область.

🔳 Сохранен	ние		\times
Имя пакета:	250506-13:37_	Пример	
	Верхний левы	й угол	
Широта:	48.001077		
Долгота:	37.783595		
	Нижний правы	ый угол	
Широта:	47.951128		
Долгота:	37.900568		
<u>С</u> охранить			

Для удаления сохраненного пакета тайлов с локального диска необходимо выбрать пункт меню "Удаление...", в выпадающем списке выбрать пакет и нажать кнопку "Удалить". Все тайлы, входящие в данный пакет, будут удалены с локального диска.

🔜 Удаление		\times
Имя пакета:	\sim	
<u>У</u> далить		

Меню под пунктами "Настройка..." и "Токен..." на данный момент не реализованы.

Для очистки кэша (временного хранилища тайлов) необходим выбрать пункт меню "Очистка кэша...". Тайлы будут заново загружаться из сети.

4.2. Путь

Путь, преодолеваемый БПЛА, может быть отображён на карте и записан в файл. Для этого необходимо открыть меню *Путь* и выбрать пункт *Начать отслеживание*...

<u>П</u> уть
<u>Н</u> ачать отслеживание
<u>О</u> становить отслеживание
<u>У</u> даление

В открывшемся диалоговом окне в поле *Имя пути:* будет установлена текущая дата и время. Через нижнее подчеркивание можно указать осмысленное название пройденного пути, например, *_мониторинг_дороги*. Пройденный путь будет записан в файл .*map_package\paths*\<*Имя пути*>.

🔳 Отслеживан —	\times
Имя пути: 2025-03-13_15-40_	
<u>Н</u> ачать отслеживание	

После нажатия на кнопку *Начать отслеживание* каждую секунду на карте будет строиться ломанная линия красного цвета вслед за пиктограммой чёрного самолёта (INS, виртуальная навигация).

Чтобы завершить отслеживание пути и сохранить координаты в файл необходимо открыть меню *Путь* и выбрать пункт *Остановить отслеживание...* Построение пройденного пути на карте прекратится, а уже пройденный путь будет сохранен на локальном диске.

<u>П</u> уть
<u>Н</u> ачать отслеживание
<u>О</u> становить отслеживание
<u>У</u> даление

Формат данных в файле: долгота *<пробел>* широта *<пробел>* дата и время.

2025-03-13_15-40_мониторинг_дороги.txt – Блокнот				_		
<u>Ф</u> айл <u>П</u> равка Фор <u>м</u> ат <u>В</u> ид <u>С</u> правка						
0.0001253849524438175 6.1172700	045799551e-(06 13	.03.2025 :	13:24	:13	\sim
0.733311 0.486292 13.03.2025 15:4	46:03					
0.839083 1.355219 13.03.2025 15:4	46:06					
1.254586 1.652417 13.03.2025 15:4	46:12					
1.269695 1.863981 13.03.2025 15:4	46:14					
1.463574 1.987394 13.03.2025 15:4	46:16					
1.735479 2.010062 13.03.2025 15:4	46:18					
3.962309 2.224776 13.03.2025 15:4	46:25					
5.451435 1.774198 13.03.2025 15:4	46:27					
5.766307 2.290674 13.03.2025 15:4	46:29					
7.705582 2.278694 13.03.2025 15:4	46:33					
7.795761 2.272709 13.03.2025 15:4	46:39					
7.854925 2.277564 13.03.2025 15:4	46:43					
7.912638 2.309609 13.03.2025 15:4	46:47					
7.991019 2.306696 13.03.2025 15:4	46:48					
						\sim
	Стр 1, стлб 1	100%	Windows (CRLF)	UTF-	-8	:

Воспроизведение координат из файла на карте в настоящей версии G25 GCS недоступно.

4.3. Контекстное меню карты

Контекстное меню карты вызывается щелчком ПКМ по свободному месту на карте. В контекстном меню содержатся следующие пункты:

- БПЛА здесь;
- Лети сюда;
- Установить домашнюю точку;
- Вижу здесь (функционал находится в разработке);
- Лети на меня.

БПЛА здесь
Лети сюда
Установить домашнюю точку
Вижу здесь
Лети на меня

БПЛА здесь перемещает пиктограмму VNS (Virtual Navigation System, виртуальная система навигации) чёрного цвета на координату под курсором, откуда было вызвано контекстное меню карты.

Лети сюда вызывает диалоговое окно для ввода координат, на которые БПЛА должен переместиться, скорости в метрах в секунду и высоты в метрах. По нажатии на кнопку *Лететь* БПЛА перейдёт в режим GUIDED и направится в указанную точку на карте с указанной скоростью, набрав указанную высоту.

🔳 Лететь	сюда —	×
Широта:	43. <mark>1</mark> 61713	
Долгота:	131.921429	
Скорость:	0	
Высота:	0	
<u>Л</u> ететь		

Установить домашнюю точку перемещает маркер домашней точки (красная геометка с латинской буквой "Н" от слова "Ноте") и записывает домашнюю точку в полётный контроллер.

Лети на меня переводит БПЛА в режим RTL (Return To Launch, возвращение к месту взлёта) и БПЛА следует к домашней точке и выполняет на ней автоматическую посадку.

4.4. Центрирование и ориентация

Для быстрого перемещения между пиктограммами БПЛА (VNS и GNSS), домашней точки и корабля (с морским GNSS-приемником) предусмотрены следующие кнопки в правой нижней части карты.

По нажатии на одну из этих кнопок центр карты будет совмещен с соответствующей пиктограммой на карте: на корабль, на БПЛА и на домашнюю точку соответственно.

Чтобы вернуть вращение карты к исходному положению (ориентации на север) предусмотрена кнопка с пиктограммой компаса.

Чтобы привести центр пиктограммы VNS к центру пиктограммы GNSS необходимо активировать переключатель "GPS вкл/выкл".

Пока переключатель активирован VNS будет повторять траекторию GNSS. Если оператор посчитает GNSS данные неверными, следует отключить переключатель и руководствоваться пиктограммой VNS.

4.5. Расчет параметров автоматического возврата БПЛА

В случае разрыва связи между НСУ и БПЛА в работу вступит алгоритм автоматического возврата БПЛА к домашней точке. Параметрами алгоритма являются направлении полета и его продолжительность. По истечении времени БПЛА перейдёт в режим "Circle" (круг) и будет ожидать восстановления связи с оператором.

Расчет параметров может задаваться как вручную (вводом значений в соответствующие текстовые поля), так и автоматически. При ручном вводе для записи параметров в БПЛА необходимо нажать кнопку "Записать". Для автоматического расчета параметров направления и продолжительности полета необходимо активировать галочку "Авто". При этом параметры будут записываться в БПЛА автоматически каждые 5 секунд.

Алгоритм учитывает влияние ветра на траекторию полета. Пользователь может указать направление в градусах и скорость ветра в метрах в секунду. Используется метеорологический ветер (откуда дует).

